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1. INTRODUCTION

The average shortest path length is one of the most important characteristics of real graphs
(or networks). The first essential attempt for calculation this value was in 1969 year by two social
psychologists Stanley Milgram and Jeffrey Travers (small-world experiment [1]). They found a
phenomenon that any two people know each other by a sequence of 6 contacts. This theory is
known as six degrees of separation theory. Further, this theory was proved by Duncan Watts and
Steven Strogatz in [2]. It turns out, that many graphs in real applied works have the same property:
they have small average shortest path length.

Another very important characteristic for real networks was found by Watts and Strogatz —
big average clustering coefficient (or Watts and Strogatz clustering coefficient [2]). Graphs which
satisfied these properties (small average shortest path length and big average clustering coefficient)
are called small-world networks. In Social Networks science there are many other important char-
acteristics for networks so-called centralities (for example, stress, closeness, betweenness, radiality
centralities and so on). In this field they analyzed distributions of all these centralities to understand
intrinsic characteristics of networks (see for example [3–7]), but the existence of relations between
centralities is still not very well-known question. In these article we found relations between aver-
age shortest path length and radiality, closeness, stress centralities and also the connection between
average shortest path length and average clustering coefficient for geodetic graphs.

2. MAIN DEFINITIONS

All subsequent definitions are given for a simple, connected, undirected graph G. Let’s denote
by

• V (G) the set of vertices, E(G) – the set of edges, A = {aij} adjacency matrix of graph G,

• neighborhood N(v) – the induced subgraph in G on vertices which adjacent to the vertex v,

• N ′(v) induced subgraph in G on vertices = V
(
N(v)

)⋃{v},
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• f̄(x1, . . . , xk) for any function f : V × V × . . . × V → R – the restriction of this function on
N ′(v) (for example L̄(x, y) will be the average shortest path between x and y with restriction
to subgraph N ′(v)),

• di = deg(vi),

• dist(s, t) – the shortest path length between s and t,

• n = |V (G)|, m = |E(G)|,
• X(i) = X(vi) for any X – set or function corresponding to vertex vi.

Let’s give definitions of centralities.

(1) Diameter diam(G) = maxs,t∈V (G) dist(s, t).

(2) Average shortest path length
L(G) = 1

n(n−1)

∑
s,t∈V (G), s 
=t

dist(s, t).

(3) Local cluster coefficient

ci = c(i) = number of edges in N(i)
maximum possible number of edges in N(i) =

2|E(N(i))|
di(di−1) .

(4) Average clustering coefficient

CWS(G) = 1
n

∑
i∈V (G)

ci =
1
n

∑
i∈V (G)

2|E(N(i))|
di(di−1) = 1

n

∑
i∈V (G)

∑
j,k∈V (G)

aijajkaki

di(di−1) .

(5) Global clustering coefficient

C(G) = number of closed triplets in G
number of all triplets in G =

∑
i,j,k∈V (G)

aijajkaki∑
i∈V (G)

di(di−1)
.

(6) Closeness centrality Clo(v) = n−1∑
t∈V (G)

dist(v,t)
.

(7) Radiality Rad(v) =

∑
t∈V (G),t �=v

(diam(G)+1−dist(v,t))

n−1 .

(8) Stress Str(i) =
∑

s,t∈V (G), s 
=t
=i
σst(i), where σst(i) – is the total number of shortest paths from

s to t which contains vertex i.

Note that all centralities are non-negative and ci, CWS,Clo(v) are less or equal 1.

Also let’s give the definition of geodetic graph:

Definition 1. If there exists the unique shortest path between any two vertices in G then the
graph G is called geodetic.

This definition is equivalent to the condition then there is no even cycles in a graph.

3. MAIN RESULTS

Let’s consider a induced subgraph G′ ⊂ G. In general G′ can be not connected graph. In this
case let’s define the average shortest path length for vertices of G′ with relation to the distance dist
in the ambient graph G. Let’s call L

(
N(i)

)
the local average shortest path length for the vertex i.

Let’s start with simple relations: let’s proof the relation between local shortest path length and
local clustering coefficient.

Lemma 1.

L
(
N(i)

)
= 2− ci.
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Proof.

L(N(i)) =
1

di(di − 1)

∑
s,t∈N(i),s 
=t

dist(s, t)

=
1

di(di − 1)

∑
(s,t)∈E(N(i))

dist(s, t) +
∑

s,t∈N(i),(s,t)/∈E(N(i))

dist(s, t)

=
1

di(di − 1)

⎛
⎝2|E(N(i))| +

∑
(s,i),(i,t)∈E(G),(s,t)/∈E(G)

dist(s, t)

⎞
⎠

=
1

di(di − 1)

(
2|E(N(i))| + 2(di(di − 1)− 2|E(N(i))|)

)
= 2− ci.

Note that shortest paths for vertices in N(i) are defined corresponding to whole graph G.

Averaging by i we obtain simple corollary about the relation between local shortest path length
and average clustering coefficient.

Corollary 1.

CWS(G) = 2− 1

n

∑
i∈V (G)

L
(
N(i)

)
.

Let’s proof the relation between shortest path length in subgraph N ′(i) and shortest path length
in N(i).

Lemma 2.

L
(
N ′(i)

)
=

(di − 1)L
(
N(i)

)
+ 2

di + 1
.

Proof. By definition

L
(
N ′(i)

)
=

1

(di + 1)di

∑
s,t∈V (N ′(i)), s 
=t

dist(s, t) =
di − 1

di + 1
L
(
N(i)

)
+

2

di + 1
.

Let’s proof the relation between shortest path length in a induced subgraph and shortest path
length in ambient graph if induced subgraph is obtained from ambient graph by deleting one vertex.

Theorem 1. Let a graph G is obtained from a connected simple graph G′ by deleting one vertex
and |V (G)| = n. Then

L(G′) � n

n+ 1
L(G),

where the average shortest path length L(G) is defined in the ambient graph G′, if G is not connected.

Proof. Let’s denote the deleted vertex by v. By the triangle inequality ∀s, t ∈ V (G) : dist(s, v)+
dist(v, t) � dist(s, t), here the equality holds if, there are no paths from s to t in G. Therefore,∑

s,t∈V (G),s 
=t

(
dist(s, v) + dist(v, t)

)
�

∑
s,t∈V (G),s 
=t

dist(s, t),

2(n − 1)

n(n− 1)

∑
t∈V (G)

dist(v, t) � 1

n(n− 1)

∑
s,t∈V (G),s 
=t

dist(s, t),

2

n

∑
t∈V (G)

dist(v, t) � L(G).
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Then,

L(G′) =
1

(n+ 1)n

∑
s,t∈V (G′),s 
=t

dist(s, t)

=
1

(n+ 1)n

⎛
⎝2

∑
t∈V (G)

dist(v, t) +
∑

s,t∈V (G),s 
=t

dist(s, t)

⎞
⎠

=
1

n+ 1

2

n

∑
t∈V (G)

dist(v, t) +
n− 1

n+ 1
L(G) � n

n+ 1
L(G).

Note that if G consists of n isolated vertices then the equality holds.

We obtain corollaries.

Corollary 2. Let a graph G is obtained from a connected simple graph G′ ⊂ H by deleting one
vertex, |V (G)| = n and H is connected and simple. Then

L(G′) � n

n+ 1
L(G),

where the average shortest path lengths L(G) and L(G′) are defined in the ambient graph H, if
corresponded graphs are not connected.

Proof. The proof is the same as for the previous theorem and also if G consists of n isolated
vertices then the equality holds.

Corollary 3.

L
(
N ′(i)

)
� di

di + 1
L
(
N(i)

)
.

Let’s proof the relation between shortest path length in a induced subgraph and shortest path
length in ambient graph.

Theorem 2. Let’s G′ ⊂ G be induced subgraph and |V (G)| = n, |V (G′)| = n+ k. Then

L(G′) � n

n+ k
L(G),

where the average shortest path length L(G) is defined in the ambient graph G′, if G is not connected.

Proof. Let’s construct the graph G′ from G by adding sequentially k vertices and corresponded
edges. Let’s first sequentially add vertices adjacent to vertices of the graph G. Adding these vertices
one by one we obtain a sequence of graphs G1, G2, . . . , Gp, where |V (Gi)| = n + i. Further, let’s
add is the same way vertices adjacent to vertices of the graph Gp and so on. In the end we obtain
the graph G′. By previous corollary

L(G′) � n+ k − 1

n+ k
L(Gk−1) �

n+ k − 1

n+ k

n− k − 2

n− k − 1
L(Gk−2)

=
n− k − 2

n+ k
L(Gk−2) � · · · � n

n+ k
L(G).

Let’s proof the relation between average closeness centrality and average shortest path length.

Lemma 3.
L(G) � n∑

v∈V (G)
Clo(v)

.
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Proof. By the inequality of harmonic mean and arithmetic mean

1

n

∑
v∈V (G)

Clo(v) =
1

n

∑
v∈V (G)

n− 1∑
t∈V (G)

dist(v, t)
� n(n− 1)∑

v,t∈V (G)
dist(v, t)

=
1

L(G)
.

Note that an equality holds when all average shortest path lengths from any vertex to all remaining
vertices are equal.

Let’s proof the relation between average shortest path length and average radiality.

Lemma 4.

L(G) = diam(G) + 1− 1

n

∑
v∈V (G)

Rad(v).

Proof. The proof holds from definition

1

n

∑
v∈V (G)

Rad(v) =
1

n

∑
v∈V (G)

(n − 1)(diam(G) + 1)− ∑
t∈V (G), t
=v

dist(v, t)

n− 1

= diam(G) + 1− L(G).

Let’s prove a theorem about a connection between the average stress centrality and average
shortest path length for geodetic graphs.

Theorem 3. If G is geodetic, then

L(G) = 1 +
1

n(n− 1)

∑
i∈V (G)

Str(i).

Proof. Let’s define

χst(i) =

{
1, if i �= s �= t – is the vertex of the shortest path between s and t,

0, otherwise.

Thus, Str(i) =
∑

s,t∈V (G)
χst(i). If there exists the unique shortest path between any two vertices

in G, then dist(s, t) =
∑

i∈V (G)
χst(i)+1 (otherwise, dist(s, t) � ∑

i∈V (G)
χst(i)+1). Therefore, for any i

∑
s,t∈V (G)

dist(s, t) = 2|E|+
∑

s,t∈V (G), dist(s,t)�2

dist(s, t)

= 2|E| +
∑

s,t∈V (G), dist(s,t)�2

⎛
⎝ ∑

i∈V (G)

χst(i) + 1

⎞
⎠

= 2|E| +
∑

i∈V (G)

Str(i) + n(n− 1)− 2|E| =
∑

i∈V (G)

Str(i) + n(n− 1).

Corollary 4. For any simple connected G

L(G) � 1 +
1

n(n− 1)

∑
i∈V (G)

Str(i).
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First let’s proof theorem about a connection between average clustering coefficient and stress
centrality and we will use it for a connection between the average shortest path length and the
average local clustering coefficient further.

Theorem 4. If there is no pendant vertices in graph, then

CWS(G) � 1

n

∑
i∈V (G)

(
1− Str(i)

di(di − 1)

)
.

Proof. Note that ∀j, k ∈ N(i) : (j, k) /∈ E(N(i)) the shortest path between j and k is j → i → k.
Therefore,

Str(i) � 2

(
di(di − 1)

2
− |E(N(i))|

)
,

1

di(di − 1)
Str(i) � 1− ci.

Averaging by i

CWS(G) � 1

n

∑
i∈V (G)

(
1− Str(i)

di(di − 1)

)
.

Note that for diam(G) = 2 holds an equality.

Corollary 5. For any simple connected graph G

CWS(G) � 1

n

∑
i∈V (G)

(
1− Str(i)

di(di − 1)

)
− number of pendant vertices

n
.

Proof. Let’s define Str(i)
di(di−1) as 0 for every pendant vertex i, then in the inequality 1

di(di−1)Str(i) �
1 − ci in the right side will be 1 and in the left side 0, thus if we add in the left side 1 for every
pendant vertex, will be right equality.

Now let’s prove a theorem about a connection between the average shortest path length and the
average local clustering coefficient for geodetic graphs.

Theorem 5. If G is geodetic and ∀i, j ∈ V (G) hold, if di � dj then Str(i) � Str(j), then

1− CWS(G) � 1

n

∑
i∈V (G)

(
L(G)− 1

)
(n− 1)

di(di − 1)
+

number of pendant vertices

n
.

Proof. Let’s re-numerate vertices such that ∀i � j : di � dj . Then for i � j hold Str(i) � Str(j)
and di(di − 1) � dj(dj − 1). By Theorem 3 and Corollary 5 for the case if there is no pendant
vertices in graph holds

1−CWS(G) � 1

n

∑
i∈V (G)

Str(i)

di(di − 1)

Chebyshev’s sum inequality
�

⎛
⎝ 1

n

∑
i∈V (G)

Str(i)

⎞
⎠

⎛
⎝ 1

n

∑
i∈V (G)

1

di(di − 1)

⎞
⎠

=
1

n

∑
i∈V (G)

(
L(G)− 1

)
(n− 1)

di(di − 1)
.

For pendant vertices we should add number of pendant vertices
n in the right side. Note that if there exist

two vertices i, j ∈ V (G) such that di < dj and Str(i) < Str(j) then the inequality in this theorem
will be strict.
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Example 1. Let’s consider a star G with V (G) = n+1 vertices. The star is geodetic graph. The
central vertex has degree n, local clustering coefficient ci = 0 and stress centrality Str(i) = n(n−1).
Other vertices are pendant (di = 1, ci = 0, Str(i) = 0). Thus for this graph holds Theorem 5.

L(G) =
n(2n − 1) + n

(n+ 1)n
=

2n

n+ 1
, CWS = 0.

1− CWS(G) = 1 =
n−1
n+1 n

n(n− 1)
+

n

n+ 1

=
1

n+ 1

∑
i∈V (G)

(
L(G)− 1

)
n

di(di − 1)
+

number of pendant vertices

n+ 1
.

Thus, for this example holds equality.
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